Se esittelee matematiikan peruskäsitteitä ja -rakenteita ja tarkastelee matemaattisten lausumien muotoilua täsmällisesti. Sitten osoitetaan, miten tällaiset lausumat voidaan todistaa tai kumota. Se antaa opiskelijoille taidot, joita tarvitaan matematiikan edistyneempiä kursseja varten.
Edellytykset/poikkeukset
Jos kurssi suoritetaan osana kandidaatin tutkintoa, kurssit, jotka on suoritettava hyväksytysti ennen kuin tätä kurssia voi kokeilla:
- MT1174 Laskutoimitukset (Calculus) tai sekä MT105a Matematiikka 1 että MT105b Matematiikka 2
Kurssia ei voi suorittaa kurssin kanssa, johon kuuluu MT3095 Matematiikan jatkokurssien opinnot taloustietelijöille.
Käsiteltävät aiheet
- Logiikka
- Integterit
- Määrät ja funktiot
- Primiluvut
- Relaatiot
- Reaaliluvut ja kompleksiluvut
- Suurin yhteinen jakaja ja modulaariaritmetiikka
- Infimum ja supremum
- Jaksot
- Jaksojen rajat
- Funktiot ja funktioiden rajat
- Jatkuvuus
- Yhtälömäärät
- Yhtälöryhmät
.
Lopputulokset
Jos suoritat kurssin hyväksytysti, sinun pitäisi pystyä:
- käyttää matemaattista merkintätapaa muotoillaksesi matemaattisia käsitteitä ja väittämiä täsmällisesti
- muistella keskeisiä tärkeitä määritelmiä ja tuloksia
- käyttää loogista argumentointia ja erilaisia todistustekniikoita todistaaksesi tai kumotaksesi matemaattisia väittämiä
- käyttää kurssilla oppimiaan tekniikoita ratkaistaksesi erilaisia vakio-ongelmia diskreettisen matematiikan, analyysin ja algebran alalta
- lähestyäksesi ja ratkotaksesi uusia, ennennäkemättömiä ongelmia analyyttisesti ja loogisesti täsmällisellä tavalla.
Arviointi
Näyttämätön kirjallinen tentti (3 h).
Välttämätön lukeminen
- Biggs, Norman L. Discrete Mathematics. Oxford: Clarendon Press.
- Eccles, P.J. An Introduction to Mathematical Reasoning; numbers, sets and functions. Cambridge University Press.
- Bryant, Victor. Vielä yksi johdatus analyysiin. Cambridge University Press.
Kurssin tiedotteet
Lataa kurssin tiedotteet LSE:n verkkosivuilta.