Strålingens love og Plancks lyskvanter
Kvanteteorien om absorption og emission af stråling, som Planck offentliggjorde i 1900, indvarslede den moderne fysiks æra. Han foreslog, at alle materielle systemer kun kan absorbere eller afgive elektromagnetisk stråling i “bidder” af energi, kvanta E, og at disse er proportionale med frekvensen af denne stråling E = hν. (Proportionalitetskonstanten h kaldes, som nævnt ovenfor, Plancks konstant.)
Planck blev ført til denne radikalt nye indsigt ved at forsøge at forklare den gådefulde observation af mængden af elektromagnetisk stråling, der udsendes af et varmt legeme, og især afhængigheden af intensiteten af denne glødende stråling af temperaturen og af frekvensen. De kvantitative aspekter af den glødende stråling udgør strålingslovene.
Den østrigske fysiker Josef Stefan fandt i 1879, at den samlede strålingsenergi pr. tidsenhed, der udsendes af en opvarmet overflade pr. arealenhed, stiger som fjerde potens af dens absolutte temperatur T (Kelvin-skalaen). Det betyder, at solens overflade, der har T = 6 000 K, udstråler pr. arealenhed (6 000/300)4 = 204 = 160 000 gange mere elektromagnetisk energi end det samme areal af jordens overflade, der antages at have T = 300 K. I 1889 brugte en anden østrigsk fysiker, Ludwig Boltzmann, termodynamikkens anden lov til at udlede denne temperaturafhængighed for et ideelt stof, der udsender og absorberer alle frekvenser. Et sådant objekt, der absorberer lys i alle farver, ser sort ud og blev derfor kaldt et sort legeme. Stefan-Boltzmann-loven skrives i den kvantitative form W = σT4, hvor W er den udstrålede energi pr. sekund og pr. arealenhed, og proportionalitetskonstanten er σ = 0,136 kalorier pr. meter2-sekund-K4.
Bølgelængde- eller frekvensfordelingen af sortlegemsstråling blev undersøgt i 1890’erne af Wilhelm Wien i Tyskland. Det var hans idé at bruge en ovn med et lille hul som en god tilnærmelse til det ideelle sorte legeme som en god tilnærmelse til det ideelle sorte legeme. Enhver stråling, der kommer ind i det lille hul, bliver spredt og reflekteret fra ovnens indervægge så ofte, at næsten al indkommende stråling absorberes, og at chancen for, at noget af den finder vej ud af hullet igen, kan gøres overordentlig lille. Den stråling, der kommer ud af hullet, er således meget tæt på den elektromagnetiske sortkropstråling i ligevægt, der svarer til ovnens temperatur. Wien fandt ud af, at strålingsenergien dW pr. bølgelængdeinterval dλ har et maksimum ved en bestemt bølgelængde λm, og at dette maksimum forskydes til kortere bølgelængder, når temperaturen T øges, som illustreret i figur 8. Han fandt, at produktet λmT er en absolut konstant: λmT = 0,2898 cm-K.
Wiens lov om forskydning af stråleeffektmaksimummet til højere frekvenser, når temperaturen øges, udtrykker i en kvantitativ form almindelige observationer. Varme genstande udsender infrarød stråling, som mærkes af huden; nær T = 950 K kan man iagttage en mat rød glød, og farven lyser op til orange og gul, når temperaturen øges. Wolframglødetråden i en glødepære er T = 2.500 K varm og udsender stærkt lys, men toppen af dens spektrum ligger stadig i det infrarøde område i henhold til Wien’s lov. Toppen forskydes til det synlige gule, når temperaturen er T = 6.000 K, som i solens overflade.
Det var formen af Wien’s strålingsenergifordeling som en funktion af frekvensen, som Planck forsøgte at forstå. Nedgangen i strålingsudbyttet ved lav frekvens var allerede blevet forklaret af Lord Rayleigh i form af faldet, med faldende frekvens, i antallet af modusformer af elektromagnetisk stråling pr. frekvensinterval. Rayleigh antog i overensstemmelse med princippet om energiens equipartition, at alle mulige frekvensformer kunne udstråle med samme sandsynlighed. Da antallet af frekvensformer pr. frekvensinterval fortsætter med at stige ubegrænset med kvadratet på frekvensen, forudsagde Rayleighs formel en stadig stigende mængde stråling af højere frekvenser i stedet for det observerede maksimum og det efterfølgende fald i strålingseffekten. En mulig vej ud af dette dilemma var at nægte de højfrekvente modes en lige stor chance for at udstråle. For at opnå dette postulerede Planck, at radiatorerne eller oscillatorerne kun kan udsende elektromagnetisk stråling i begrænsede energimængder af størrelsen E = hν. Ved en given temperatur T er der således ikke tilstrækkelig termisk energi til rådighed til at skabe og udsende mange store strålingskvanter hν. Der kan imidlertid udsendes flere store energikvanter hν, når temperaturen hæves. Kvantitativt set er sandsynligheden for at udsende et elektromagnetisk energikvantum hν ved temperaturen T
hvor k er Boltzmanns konstant, velkendt fra termodynamikken. Med c = λν bliver Plancks strålingslov så
Dette stemmer glimrende overens med Wien’s eksperimentelle resultater, når værdien af h er valgt korrekt, så den passer til resultaterne. Det skal påpeges, at Plancks kvantisering henviser til oscillatorer af det sorte legeme eller opvarmede stoffer. Disse oscillatorer med frekvensen ν er ude af stand til at absorbere eller udsende elektromagnetisk stråling undtagen i energiblokke af størrelsen hν. For at forklare kvantiseret absorption og emission af stråling syntes det tilstrækkeligt kun at kvantisere energiniveauerne i mekaniske systemer. Planck mente ikke at sige, at elektromagnetisk stråling selv er kvantiseret, eller, som Einstein senere udtrykte det: “Salget af øl i pintflasker indebærer ikke, at øl kun eksisterer i udelelige pintportioner”. Ideen om, at elektromagnetisk stråling i sig selv er kvantiseret, blev foreslået af Einstein i 1905, som beskrevet i det efterfølgende afsnit.